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1 Introduction

It is expected that the Large Hadron Collider (LHC) will provide insight into the mechanism

of electro-weak symmetry breaking. Many of the theoretical models, including the Standard

Model (SM), implement it by introducing an as of yet unobserved elementary scalar particle,

a so-called Higgs boson. One of the tasks of the LHC is therefore to search for a Higgs

boson and to measure its properties (for reviews, see refs. [1–3]).

Precise measurements will require a thorough understanding of the Higgs production

cross section. In this respect, the gluon fusion process poses a number of problems: the

gluon parton densities need to be known very precisely; the cross section is of order α2
s and

thus very sensitive to the precise value of this quantity; the radiative corrections and thus

the estimated uncertainty from higher order effects is unusually large.

The latter aspect is particularly problematic because the gluon fusion process is loop

induced, so that the next-to-leading order (NLO) effects already require a two-loop calcu-

lation. Fortunately, it was found that the NLO K-factor is extremely well reproduced in

an effective theory approach, obtained by integrating out the top quark from the theory.

Details will be discussed below.

Based on this observation, it is commonly assumed that the NNLO corrections, obtained

within this effective theory approach, are practically equivalent to the full calculation, at

least below the top quark threshold. In fact, almost all radiative corrections beyond NLO

have been treated in this framework up to now.

In this paper, we study the quality of this approximation by evaluating subleading

terms in the expansion in 1/Mt. After introducing our notation and the basic formulas in
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section 2, we describe our calculational methods in section 3, while the analytic results for

the 1/Mt expansion are presented in section 4. A matching of the low- to the high energy

region is described in section 5 and the numerical analysis is presented in section 6. The

conclusions of our findings are drawn in section 7.

2 Higgs production through gluon fusion

The inclusive hadronic cross section for SM Higgs production in proton–(anti-)proton col-

lisions is obtained by convoluting the partonic cross section σ̂αβ→H+X for the scattering of

parton α with parton β by the corresponding parton density functions φα/p(x) (PDFs):

σpp′→H+X(s) =
∑

α,β∈{q,q̄,g}

∫ 1

M2

H
/s

dτ Eαβ(τ) σ̂αβ→H+X (ŝ = τs) ,

Eαβ(τ) ≡
∫ 1

τ

dx

x

[

φα/p(x)φβ/p′(τ/x)
]

, p′ ∈ {p, p̄} .

(2.1)

(In the following, we will shorten or drop the subscripts on E , φ, σ, and σ̂ whenever

there is no chance of confusion). In this formula, we have suppressed the dependence on

the factorization scale µF for φ and σ̂, as well as the dependence of σ and σ̂ on Mt and

MH. The partonic cross section σ̂ is evaluated in terms of a perturbation series in αs. Its

leading order contribution arises from the triangle diagram shown in figure 1(a) (plus the

one with opposite fermion direction), where the fermion line can in principle be any of the

six quarks. However, due to the Yukawa couplings, the by far dominant contribution is

due to top quarks, while the bottom quark has an effect of rougly 7% at the LHC,1 and 9%

at the Tevatron. All lighter quarks can safely be neglected.

NLO QCD corrections to the inclusive cross section have been known for a long time.

They were first evaluated for the top quark induced terms in the so-called “heavy-top limit”

which will be described in more detail below, and were found to increase the cross section

by roughly 70% at the LHC w.r.t. the leading order prediction [4, 5]. This was confirmed

by the general result for arbitrary top and bottom quark mass [6, 7].

The large NLO effects clearly asked for the evaluation of the NNLO corrections which,

considering its success at NLO, are generally assumed to be well approximated in the heavy-

top limit. They lead to another significant increase of the total cross section [8–10], so that

its actual value turns out to be roughly a factor of two above the LO prediction for the

LHC, and even up to a factor of three at the Tevatron (for the latest compilations, see

refs. [11, 12]). Further studies that go beyond the fixed-order NNLO result have not found

significant effects and have thus corroborated the stability of the perturbative series (see,

e.g. refs. [13, 14]).

The goal of this paper is to go beyond the heavy-top limit in order to test the quality of

this approximation. In principle, our approach would also allow us to derive an improved

1By “LHC”, we refer to pp collisions at 14TeV center-of-mass energy, although the initial energy of

the LHC will be lower; more detailed phenomenological studies at various energies are deferred to a future

publication.
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prediction of the inclusive cross section. However, it will turn out that the heavy-top limit

works so well that it reproduces our improved result to better than 0.5% accuracy.

We write the top quark induced partonic cross section as

σ̂αβ = σ0 ∆αβ , (2.2)

with

σ0 =
π
√

2GF

256

(αs

π

)2
τ2

∣

∣

∣

∣

1 + (1 − τ) arcsin2 1√
τ

∣

∣

∣

∣

2

, τ =
4M2

t

M2
H

. (2.3)

Here, GF ≈ 1.16637 · 10−5 GeV−2 is Fermi’s constant, and throughout this paper, Mt

denotes the on-shell top quark mass, and αs ≡ α
(5)
s (µR) the strong coupling for five active

quark flavours at the renormalization scale µR. The kinetic terms assume the form

∆αβ(x) = δαgδβg δ(1 − x) +
αs

π
∆

(1)
αβ(x) +

(αs

π

)2
∆

(2)
αβ(x) + . . . , (2.4)

where

x = M2
H/ŝ . (2.5)

The ∆(n) still depend on Mt, and logarithmically on the renormalization and factorization

scales µR and µF. At NLO, the full Mt dependence is known in numerical form [6] (the

virtual terms are known analytically [15–17]). At NNLO, only the heavy-top approximation

is known, however [8–10]. It will be discussed in more detail in the next section.

Note that in order to arrive at a consistent NNLO result for the hadronic cross section,

one needs to evaluate eq. (2.1) not only with an NNLO expression for σ̂, but also by taking

into account expressions for αs and the PDFs at the appropriate order. In this paper, we

use the central set of MSTW2008 [18] which are the latest available NNLO PDFs. A detailed

study of the PDF uncertainties is left for a future publication.

Apart from these pure QCD corrections, also the leading electro-weak effects have

been evaluated [19–22], and an estimate of the mixed electro-weak/QCD corrections is

available [12] as well.

3 Calculation of the 1/Mt terms

It is well known that the gluon-Higgs interaction in the heavy-top limit can be expressed

in terms of an effective Lagrangian [23]:

Leff = −H

4v
C1 Ga

µνGµν,a + L(5)
QCD , (3.1)

where v = 246 GeV and the Wilson coefficient C1 is meanwhile known through O(α5
s) [24–

26]. For completeness, we quote it here through O(α3
s) [27, 28] which is sufficient at NNLO:

C1 = − 1

3

αs

π

{

1 +
11

4

αs

π
+

(αs

π

)2
[

2777

288
+

19

16
ln

µ2

M2
t

+ nl

(

− 67

96
+

1

3
ln

µ2

M2
t

)]}

. (3.2)
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L(5)
QCD is the QCD Lagrangian with nl = 5 massless quark flavours.

Instead of working strictly within this effective theory, however, one usually factors

out the full leading order top mass dependence from the Higgs production cross section

and writes

σ∞(s) =
∑

α,β

∫ 1

M2

H
/s

dτ Eαβ(τ) σ̂αβ,∞(τs) , σ̂αβ,∞ ≡ σ0 ∆αβ,∞ , (3.3)

where σ0 is given in eq. (2.3), and ∆αβ,∞ is evaluated on the basis of eq. (3.1). It is then

clear that ∆
(1)
∞ does not depend on Mt, while ∆

(2)
∞ only has a logarithmic Mt-dependence

through C1(αs). Note that with this definition of the heavy-top limit, where the full Mt-

dependence in σ0 is kept, the LO cross section is identical to the one in the full theory.

It was observed long ago [28] that the total cross section at NLO in QCD is approximated

by σNLO
∞ to better than 1% up to values of MH = 2Mt; even at MH = 1 TeV, the deviation to

the exact result remains below 10% (see, e.g., ref. [29]). This precision is quite remarkable,

because at higher orders, gluon fusion is a 3-scale process, depending on Mt, MH, and the

center-of-mass (c.m.) energy
√

ŝ. While at LO ŝ is fixed to M2
H, the real radiation of quarks

and gluons starting at NLO allows
√

ŝ to vary from MH up to the hadronic c.m. energy

which may reach 14 TeV at the LHC. Considering more exclusive quantities such as pT -

distributions (see ref. [30] and references therein), or even fully differential approaches as in

refs. [31, 32], the number of scales increases further and the heavy-top approximation may

no longer be under control. Recent studies in this direction can be found in refs. [33, 34].

For the inclusive cross section – which is the subject of this paper – it is usually argued

that the reason for the high quality of the approximation in eq. (3.3) is the dominance of

soft gluon radiation in the higher order corrections, but a solid theoretical justification

and a quantitative error estimate are still unavailable. One may therefore remain in doubt

about the applicability of eq. (3.3) beyond NLO. A way to test it is to evaluate subleading

terms in 1/Mt to the partonic cross section, similar to what was done at NLO in ref. [35].

The effective Lagrangian of eq. (3.1) could clearly be extended to incorporate such terms

by including higher dimensional operators (see, e.g., ref. [36]). However, in general at each

order in 1/Mt the number of operators grows, and renormalization becomes more and more

clumsy, for example.

In this paper, instead of constructing an effective Lagrangian, we directly evaluate the

Feynman diagrams obtained from the six-flavour Lagrangian by applying the method of

asymptotic expansions (for a review, see ref. [37]). At NNLO, the contributing diagrams

are at the 3-loop level for the process gg → H, at the 2-loop level for the single real

emission processes gg → Hg, qg → Hq, qq̄ → Hg, and at the 1-loop level for the double

real emissions gg → Hgg, gg → Hqq̄, qg → Hqg, qq̄ → Hqq̄, qq → Hqq (identical

quark flavours), and qq′ → Hqq′ (different quark flavours; it is understood that the charge

conjugated processes need to be taken into account as well). Each Feynman diagram

considered here contains at least one top quark loop. Examples for the various contributions

are shown in figure 1.

In our approach, we assume Mt heavier than any other basic scale in the process. This

allows us to express all Feynman integrals as convolutions of massive vacuum integrals with

– 4 –
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 1. (a) LO Feynman diagram for the gluon fusion process; (b)-(h) Sample Feynman diagrams

contributing to the inclusive NNLO cross section for Higgs production in gluon fusion. (b)-(e) single

real radiation; (f)-(h) double real radiation.

at most three loops, and massless 3/4/5-point functions through 2/1/0 loops, respectively.

In fact, the purely virtual contributions at NNLO have already been calculated using this

method [38, 39],2 so we will not discuss them in more detail at this point.

For the double real emission contributions, the asymptotic expansion is equivalent to

the interchange of loop integration and Taylor expansion in p/Mt, where p is any component

of the external momenta, and thus one is left only with 1-loop massive tadpole integrals

which can be easily evaluated with the help of MATAD [40]. The difficulty arises from the

phase space integration which we perform in terms of an expansion around x = 1 [8]

(“soft expansion”). This is fully justified due to the fact that the 1/Mt-expansion assumes√
ŝ < 2Mt and thus x & 0.1 anyway. Apart from that, for the 1/M0

t -terms, it was observed

that the hadronic cross section converges very well to the full result when successively

higher order terms in (1 − x) are included in the partonic cross section [8].

The graphical representation of the asymptotic expansion of one of the single real

emission diagrams is shown in figure 2. The resulting integrals can be calculated by stan-

dard means: For the massive tadpoles, we use MATAD [40], and the 1-loop tensor integrals

are solved using Schwinger parametrisation and integration-by-parts [41]. Both routines

2Compared to ref. [38], we have additionally calculated the 1/M6

t term and found agreement with ref. [39].
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→ ⊗

+ ⊗

Figure 2. Diagrammatic representation of the asymptotic expansion of a particular Feynman

diagram in the limit ŝ, M2
H ≪ 4M2

t . The diagrams left of ⊗ represent subdiagrams of the original

diagram that are to be expanded in the momenta corresponding to the dotted external lines before

the loop integration. In this way, it is apparent that the original integral, depending on ŝ, M2
H

and M2
t , is decomposed into products of “tadpole” integrals with vanishing external momenta and

massless four-point functions. The shaded blob in the diagrams right of ⊗ represents an effective

vertex given by the result of the diagram left of ⊗ (for details of asymptotic expansions, see ref.[37],

for example).

are embedded in the q2e/exp framework [42, 43] which, in combination with the diagram

generator qgraf [44], provides a fully automatic way to calculate the relevant diagrams,

including the procedure of asymptotic expansions. This setup allows for the evaluation of

arbitrary orders in the 1/Mt expansion, with the only limitation arising from the available

computing power. For this publication, we found that the optimal cost/benefit ratio3 is

reached at O(1/M6
t ), i.e., three orders beyond the heavy-top limit known so far. After mul-

tiplication by the corresponding NLO diagrams, we evaluate the phase space integrals in

terms of hypergeometric functions depending on x = M2
H/ŝ and ǫ = (4−D)/2. Expansion

around ǫ = 0 leads to a Laurent series with poles at ǫ = 0 through O(1/ǫ4), and coefficients

depending on x through polylogarithms up to the 4th degree. Since we calculated the dou-

ble real emission contributions as expansions in (1 − x), we have to expand the single real

emission terms in the same way. This is of course trivial from the full x-dependent result.

However, also here we can perform the soft expansion before the phase space integration

which serves as a useful check.

In the sum of the virtual, single-real, and double-real emission contributions, the 1/ǫ4

poles cancel, and upon UV-renormalization of αs (for which we adopt the MS scheme),

Mt and the gluon wave function (both in the on-shell scheme), also the 1/ǫ3-terms drop

out. The remaining poles are of infra-red nature, and are absorbed into the PDFs with

the help of the usual mass factorization procedure. The relevant convolution integrals are

calculated by transforming them into Mellin space (which turns them into simple products)

and subsequent inverse Mellin transformation with the help of ref. [45].

3As the measure of “benefit” we considered the numerical difference between the highest two terms in

the 1/Mt expansion.
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4 Analytical results

A natural decomposition of the kinetic terms to the inclusive cross section is as follows:

∆
(n)
αβ = δαgδβg

[

a(n)δ(1 − x) +

2n−1
∑

k=0

b
(n)
k Dk(x)

]

+ h
(n)
αβ (x) , (4.1)

where the Dk(x) are the usual plus-distributions defined as

∫ 1

0
dxDk(x) f(x) ≡

∫ 1

0
dx [f(x) − f(1)]

lnk(1 − x)

1 − x
(4.2)

for arbitrary functions f(x) (differentiable at x = 1). The terms arising from a(n) and b
(n)
k

are called the “soft+virtual contribution”, while h
(n)
αβ is referred to as the “hard contribu-

tion”. The a(n), b
(n)
k , and h

(n)
αβ (x) are functions of the top quark mass. We write them as

{a, bk, hαβ(x)} =
∑

i≥0

(

MH

Mt

)i

{ai, bk,i, hαβ,i(x)} . (4.3)

The leading terms in 1/Mt, i.e. i = 0, have been obtained in refs. [46–48] (soft+virtual)

and refs. [8–10] (hard).4

Concerning the subleading terms in 1/Mt, let us begin with the NLO result (terms

with odd powers of MH/Mt vanish):

a
(1)
0 =

11

2
+ 6ζ2 , a

(1)
2 =

34

135
, a

(1)
4 =

3553

113400
, a

(1)
6 =

917641

190512000
,

b
(1)
0,i = 0 ∀ i ≥ 0 , b

(1)
1,0 = 12 , b

(1)
1,i = 0 ∀ i ≥ 2 , (4.4)

where ζ2 ≡ π2/6, and we have set µF = µR = MH. For completeness, we have also listed

the leading terms in 1/Mt. Note that the coefficients of the plus distributions are fully

determined in the heavy-top limit, i.e., they do not receive 1/Mt corrections [6, 35]. b
(1)
0,0

becomes non-zero for µF 6= MH as is obvious from the evolution equations for µF.

The hard terms read, for the gg channel:

h
(1)
gg,0 = −6 (1 − x + x2)2

1 − x
ln x − 12x(2 − x + x2)L(x) − 11

2
(1 − x)3 ,

h
(1)
gg,2 = −3x(1 − x)

20
, h

(1)
gg,4 =

(1 − x)
(

37 + 76x − 83x2 + 68x3
)

11200x2
,

h
(1)
gg,6 =

(1 − x)
(

3864 − 4008x + 4133x2 − 2668x3 + 3770x4
)

2016000x3
,

(4.5)

where

L(x) ≡ ln(1 − x) . (4.6)

4In fact, the leading logarithmic hard term was obtained before in ref. [28].
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For the qg channel (which is identical to the q̄g channel), one finds:

h
(1)
qg,0 =

2

3
(2 − 2x + x2) (2L(x) − ln x) − 1 + 2x − x2

3
,

h
(1)
qg,2 =

11(−4 + 6x − 3x2 + x3)

270x
,

h
(1)
qg,4 =

24409 − 69264x + 62052x2 − 24052x3 + 6855x4

1814400x2
,

h
(1)
qg,6 =

−181104 + 690137x − 1008064x2 + 658284x3 − 214280x4 + 55027x5

108864000x3
.

(4.7)

And finally, for the qq̄ channel, it is

h
(1)
qq̄,0 =

32

27
(1 − x)3 , h

(1)
qq̄,2 =

88

405

(1 − x)3

x
, h

(1)
qq̄,4 =

(1 − x)3 (3487 + 842x)

85050x2
,

h
(1)
qq̄,6 =

(1 − x)3 (41160 + 16271x + 5573x2)

5103000x3
.

(4.8)

Note that except for the 1/M2
t terms for the gg channel which can be found in ref. [35],

even this NLO expansion has never been given in the literature. For the sake of brevity,

we quote only the first four terms in 1/M2
t here; higher order terms are available from the

authors upon request. The same is true for the result for general values of µF and µR.

There are several observations to be made:

• Pulling out the leading order top mass dependence in terms of σ0, as done in eq. (2.2),

absorbs all the logarithmic x and (1 − x) dependence into the leading 1/Mt terms.

• In general, each power in M2
H/M2

t is accompanied by a power in 1/x. This is a

consequence of assuming that the top quark mass is the heaviest scale of the process.

The expansion therefore is not just in M2
H/M2

t as suggested by the form of eq. (4.3),

but also in ŝ/M2
t which leads to

ŝ

M2
t

=
M2

H

M2
t

1

x
. (4.9)

These terms are a sign of the breakdown of the heavy-top limit: for large ŝ, they lead

to a singular behaviour of the partonic cross section that becomes stronger with every

order in 1/M2
t . The consequence is that the corresponding hadronic cross section does

not converge as successively higher orders in 1/Mt an included. Our solution of this

problem will be described below.

• For the gg channel, the coefficient of the 1/x term at i = 2 turns out to vanish.

The strategy of ref. [35] for analysing the 1/Mt corrections at NLO was therefore to

discard the terms with i > 2 in the gg channel, and to replace the 1/Mt expansion for

the other channels by the exact result (which is much easier to obtain than for the

gg channel). For the NNLO case, we do not have that option, because the calculation

of the full mass dependence is currently out of reach. As mentioned before, we will

discuss the problem of low x (large ŝ) in more detail in section 5.

– 8 –



J
H
E
P
1
1
(
2
0
0
9
)
0
8
8

Let us now turn to the NNLO results. For the soft+virtual terms, we obtain:

a
(2)
0 =

11399

144
+

19

8
lHt +

133

2
ζ2 −

165

4
ζ3 −

9

8
ζ4 + nl

(

−1189

144
+

2

3
lHt −

5

3
ζ2 +

5

6
ζ3

)

,

a
(2)
2 = −47437199

1244160
+ ζ2

(

89

45
+

7

45
ln 2

)

+
1909181

55296
ζ3 +

883

1080
lHt

+ nl

(

14563

48600
− 281

2880
lHt −

7

90
ζ2

)

,

a
(2)
4 = −998645169149

117050572800
+ ζ2

(

9677

37800
+

857

37800
ln 2

)

+
267179777

35389440
ζ3 +

4039

51840
lHt

+ nl

(

4565713

285768000
− 857

75600
ζ2 −

193927

21772800
lHt

)

,

a
(2)
6 = −1712964005499545249

39328992460800000
+ ζ2

(

646571

15876000
+

17881

4536000
ln 2

)

+
5756378217151

158544691200
ζ3

+
88077779

7620480000
lHt + nl

(

8432587511

4800902400000
− 17881

9072000
ζ2 −

111726613

91445760000
lHt

)

,

b
(2)
0,0 = −101

3
+ 33 ζ2 +

351

2
ζ3 + nl

(

14

9
− 2 ζ2

)

,

b
(2)
1,0 = 133 − 90 ζ2 −

10

3
nl , b

(2)
1,2 =

136

45
, b

(2)
1,4 =

3553

9450
, b

(2)
1,6 =

917641

15876000
,

b
(2)
2,0 = −33 + 2nl , b

(2)
2,i = 0 ∀ i ≥ 2 ,

b
(2)
3,0 = 72 , b

(2)
3,i = 0 ∀ i ≥ 2 ,

(4.10)

where ζn ≡ ζ(n) is Riemann’s zeta function with values

ζ2 =
π2

6
= 1.64493 . . . , ζ3 = 1.20206 . . . , ζ4 =

π4

90
= 1.08232 . . . , (4.11)

and

lHt = ln
M2

H

M2
t

. (4.12)

The various hard contributions are evaluated as expansions around x = 1. We quote

them through O(1−x) for the sake of brevity. Terms through order (1−x)13, for arbitrary

values of µF and µR, are available upon request from the authors.

For the gg channel, we find

h
(2)
gg,0 =

1453

12
− 147 ζ2 − 351 ζ3 + L(x)

(

− 1193

4
+ 180 ζ2

)

+
411

2
L2(x) − 144L3(x)

+ nl

(

− 77

18
+ 4 ζ2 +

101

12
L(x) − 4L2(x)

)

+ (1 − x)

[

− 3437

4
+

1017

2
ζ2 +

1053

2
ζ3 + L(x)

(

2379

2
− 270 ζ2

)

− 2385

4
L2(x) + 216L3(x) + nl

(

395

24
− 22

3
ζ2 −

45

2
L(x) +

22

3
L2(x)

)]

+ · · · ,
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h
(2)
gg,2 =

68

45
− 272

45
L(x) + (1 − x)

[

− 6661

1200
− 9

80
ζ2 +

172

15
L(x) − 81

80
L2(x) − 27

40
lHt

+ nl

(

11

80
− 1

20
L(x)

)]

+ · · · ,

h
(2)
gg,4 =

3553

18900
− 3553

4725
L(x) + (1 − x)

[

− 1837333

10584000
+

21

3200
ζ2 +

49927

50400
L(x)

+
189

3200
L2(x) +

471

11200
lHt + nl

(

− 659

67200
+

7

2400
L(x)

)]

+ · · · ,

h
(2)
gg,6 =

917641

31752000
− 917641

7938000
L(x) + (1 − x)

[

13461173

635040000
+

1697

896000
ζ2 +

5644979

42336000
L(x)

+
15273

896000
L2(x) +

15731

1344000
lHt + nl

(

− 23347

8064000
+

1697

2016000
L(x)

)]

+ · · · .

(4.13)

Here and in the following equations, the ellipse indicate higher orders in (1 − x). The

qg (and q̄g) channel reads

h
(2)
qg,0 =

11

27
+

29

6
ζ2 +

311

18
ζ3 +

85

36
L2(x) +

367

54
L3(x)

+ nl

(

13

81
− 2

3
L(x) +

1

18
L2(x)

)

+ L(x)

(

341

18
− 50

9
ζ2

)

+ (1 − x)

[

− 959

18
+ 8 ζ2 +

433

9
L(x) − 33

2
L2(x) +

4

9
nl L(x)

]

+ · · · ,

h
(2)
qg,2 =

68

405
+

136

405
L(x) + (1 − x)

[

− 62737

24300
− 539

1080
ζ2 +

4367

3240
L(x) − 187

360
L2(x)

− 1441

3240
lHt + nl

(

44

405
− 11

270
L(x)

)]

+ · · · ,

h
(2)
qg,4 =

3553

170100
+

3553

85050
L(x) + (1 − x)

[

− 66227323

285768000
− 2947

129600
ζ2 +

26401

388800
L(x)

− 7157

302400
L2(x) − 37481

2721600
lHt + nl

(

421

85050
− 421

226800
L(x)

)]

+ · · · ,

h
(2)
qg,6 =

917641

285768000
+

917641

142884000
L(x) + (1 − x)

[

− 1018432391

34292160000

− 39011

15552000
ζ2 +

2460599

326592000
L(x) − 94741

36288000
L2(x) − 96389

65318400
lHt

+ nl

(

5573

10206000
− 5573

27216000
L(x)

)]

+ · · · .

(4.14)

The remaining channels only start at higher orders in (1 − x):

h
(2)
qq̄,0 = h

(2)
qq,0 = h

(2)
qq′,0 = (1 − x)

[

20

9
− 16

9
ζ2 −

16

9
L(x) +

16

9
L2(x)

]

+ · · · ,

h
(2)
qq̄,i = h

(2)
qq,i = h

(2)
qq′,i = O((1 − x)2) ∀ i ≥ 2 .

(4.15)

Again, we have included the known leading terms in 1/Mt for the sake of completeness.
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5 Small-x behaviour

As pointed out above, the 1/Mt expansion cannot give the proper result in the low-x (large-

ŝ) region, which is why the (1 − x)-expansion in this approach is no worse than the full x

dependence. Fortunately, in ref. [49], it was derived that the leading small-x behaviour of

the partonic cross section is given by (µF = µR = MH)

σ̂(1)
gg (x) = 3σ0 C(1) + O(x) , σ̂(2)

gg (x) = −9σ0 C(2) ln x + c + O(x) , (5.1)

where the coefficients C(1) and C(2) are available in ref. [49] in the form of a numerical table

for various values of Mt/MH out of which we constructed simple interpolating functions.

The constant c was undetermined. Note that eq. (5.1) is the actual limit of ŝ → ∞, i.e., it

is not derived in the heavy-top limit.

We may use this additional information to improve our result in the following way:5

σ̂(1)
gg (x) = σ̂(1),N

gg (x) + (1 − x)N+1
[

3σ0C(1) − σ̂(1),N
gg (0)

]

,

σ̂(2)
gg (x) = σ̂(2),N

gg (x) − 9σ0C(2)

[

ln x +

N
∑

k=1

1

k
(1 − x)k

]

,
(5.2)

where σ̂
(n),N
gg denotes the expansion of the partonic cross section around x = 1 through

O((1−x)N ). Note that σ̂
(1)
gg (x) and σ̂

(2)
gg (x) have the correct behaviour for x → 0 and x → 1

up to the orders considered. In this way, we arrive at smooth functions that approximate

the full partonic cross section over the full x-range. In order to illustrate the quality of

this method, figure 3 shows σ̂
(1)
gg (x) together with the soft expansion σ̂

(1),N
gg (x) for N = 8,

as well as σ̂
(1)
gg,∞, i.e., the full x-dependence of the heavy-top result. All expressions include

top mass corrections through O(1/M6
t ); the curves are normalized by σ0.

In order to be able to directly compare figure 3 with ref. [50] (which updates the

numerics of ref. [49]), the scales in figure 3 (a) are chosen identical to those of figures 1 and

2 in ref. [50]. For the same reason, we set Mt = 170.9 GeV at this point, in contrast to the

actual numerical section of this paper where the current world average for Mt is used. And

finally, the curve for σ̂
(1)
gg,∞ in the heavy-top limit is included (i.e., only the 1/M0

t terms),

as in ref. [50]. In case one is misled by the apparently large effect, figure 3 (b) shows the

same curves on a linear scale. In fact, as will become obvious shortly, the effect of this

matching on the hadronic cross section is rather small compared to using just the pure soft

expansion σ̂
(1),N
gg (x) (cf. figure 5 below).

Similarly, figure 4 shows the NNLO partonic cross section (gluon-gluon channel) as

constructed from eq. (5.2), again with choice of scales and set of parameters as in ref. [50].

The agreement to the result obtained in ref. [50] is good, with a small difference on the

unknown constant c in eq. (5.2). The effect of the matching on the hadronic cross section

is completely negligible when compared to the pure soft expansion σ̂
(2),N
gg (x) (cf. figure 7

below). This is of course due to a suppression of the large-x region by the parton densities.

5The upper equation essentially corresponds to the matching procedure suggested in ref. [49].
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Figure 3. The NLO contribution to the partonic cross section σ̂
(1)
gg as a function of x = M2

H/ŝ on

a logarithmic (a) and a linear scale (b). The expansion in (1 − x) converges up to the threshold

x = M2
H/(4M2

t ) ≈ 0.14. This expansion, through (1− x)8, is displayed as the dashed curve, σ̂
(1),N
gg ,

N = 8. The full x-dependence of the 1/Mt expansion is shown as the dotted curves (lower: leading

term in MH/Mt, upper: including terms of order 1/M6
t ). The solid line is the combination of the

(1 − x)-expansion with the leading behaviour at x → 0, cf. eq. (5.1).
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Figure 4. Same as figure 3, but at NNLO. The dotted line is the full x-dependence of the 1/M0
t

result.

6 Numerical results

Unless stated otherwise, in all our numerical analyses in this paper, we use Mt = 173.1 GeV

and set µF = µR = MH. The latter restriction shall be sufficient for this first study of the

top mass effects; more detailed phenomenological studies, including scale variations, are

left for a future publication.
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6.1 Next-to-leading order

The natural extension of the heavy top limit of eq. (3.3) would be to use eq. (2.2) with the

full top mass dependence in σ0 and the 1/Mt expansion of ∆αβ as given in section 4, and to

match the result to the large-ŝ region as defined in section 5. However, in order to strictly

test the heavy-top limit, we prefer to apply a consistent 1/Mt expansion to the partonic

cross section, without factoring out the LO mass dependence. Once the convergence of

this 1/Mt expansion and its consistency with the heavy-top limit of eq. (3.3) is shown, one

could try to derive an “improved heavy-top limit” by keeping the full mass dependence

in σ0. However, as we will see, the improvement achieved in this way is well below any

expected experimental accuracy.

At NLO, we therefore define

σ̂NLO
αβ (Mn

t ) = σ0 δαgδβgδ(1 − x) +
αs

π
σ̂

(1)
αβ (Mn

t ) , (6.1)

where σ̂
(1)
αβ (Mn

t ) is the NLO contribution to the partonic cross section evaluated as an

expansion through O((MH/Mt)
n). It is obtained by expanding σ0∆

(1)
αβ with σ0 and ∆

(1)
αβ

from eqs. (2.3), (4.1), (4.4)–(4.8) in terms of 1/Mt, and applying the matching procedure

of eq. (5.2). The corresponding hadronic quantity derived from eq. (6.1) is denoted by

σNLO
αβ (Mn

t ), as usual. Note that it also depends on the depth of the expansion in (1 − x).

First, we look at the convergence of the 1/Mt expansion of the gg channel alone,

whose low-x behaviour is implemented as described in section 5. Figure 5 shows the ratio

of σNLO
gg (Mn

t ), keeping various orders in 1/Mt, to the fully mass dependent result σHIGLU
gg

(dashed: 1/Mn
t , n = 0, . . . , 8; solid: 1/M10

t ). The dotted line corresponds to the pure soft

expansion result σN
gg, without matching to the low-x behaviour. The convergence towards

the exact result is excellent, both for the LHC (a) and the Tevatron (b). The slightly

better behaviour for the Tevatron is due to the smaller high-energy region. The effect of

the matching from section 5 is rather small.

Unfortunately, the analytic low-x behaviour is currently not known for the subleading

channels (qg, qq̄, and also the NNLO channels qq, qq′). However, their numerical contribu-

tion at NLO is very small (for “reasonable” values of µF ∼ MH): for Higgs masses between

100 and 300 GeV, the qg contribution is at the few percent level (< 4%) and the qq̄ at the

permille level.

One could therefore just proceed by ignoring the 1/Mt-corrections at NNLO for all

but the gg channel. At NLO, however, we observe that we can nevertheless improve the

prediction by including the 1/Mt and (1 − x) expansion of the subleading terms up to

a certain depth beyond which the convergence properties of the series for the individual

channels deteriorate, as is typical for an asymptotic series. Applying this criterion at NLO

allows us to include the terms through order 1/M10
t for the qg channel, but only the first two

terms for the qq̄ channel. The convergence of the expansion in (1−x) is excellent (see below).

This “optimal” result will be denoted by σNLO(Mt). It is shown in figure 6, divided by

the exact mass dependence, both for a 14 TeV proton-proton collider (a), and for a 1.96 TeV

proton–anti-proton collider (b). One observes a nice convergence for the soft expansion

towards a result that reproduces the full mass dependence at the sub-percent level. For

– 13 –
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Figure 5. Ratio of the gg induced component of the NLO hadronic cross section as obtained from

eq. (5.2) to the value obtained from HIGLU [51], when keeping successively higher orders in 1/Mt

(decreasing dash-length corresponds to increasing order); the dotted line is the result obtained from

the pure soft expansion σ̂
(1),N
gg through order 1/Mt

10 without the matching of eq. (5.2).
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Figure 6. Solid: the final result for the NLO cross section, divided by the full top mass dependent

result as obtained from HIGLU [51]. The dashed lines correspond to various orders in the (1 − x)

expansion and nicely demonstrate the quality of the convergence. The dotted lines represent the

result of the heavy-top limit at NLO (eq. (3.3)).

comparison, the figure also contains the ratio of the heavy-top limit to the exact mass

dependence (dotted line) which deviates from one at the percent level, as pointed out before.

6.2 Next-to-next-to-leading order

In analogy to eq. (6.1), we define

σ̂NNLO
αβ (Mn

t ) = σ0

[

δαgδβgδ(1 − x) +
αs

π
∆

(1)
αβ,∞

]

+
(αs

π

)2
σ̂

(2)
αβ (Mn

t ) , (6.2)
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where σ̂
(2)
αβ (Mn

t ) is obtained by expanding σ0∆
(2)
αβ , with σ0 and ∆

(2)
αβ from

eqs. (2.3), (4.1), (4.10)–(4.15), in terms of 1/Mt, up to power n, and applying the matching

procedure of eq. (5.2). We already know that the first term in eq. (6.2) is an excellent

approximation to the full top mass dependent result, and therefore eq. (6.2) provides a

suitable quantity to compare the heavy-top result of eq. (3.3) to the 1/Mt expansion.

Again, we first look at the convergence of the 1/Mt expansion of the gg channel alone,

whose low-x behaviour is implemented as described in section 5. Figure 7 shows the ratio

of σNNLO
gg (Mn

t ), keeping various orders in 1/Mt, to the heavy-top result σNNLO
gg,∞ of eq. (3.3),

which we recall includes the exact LO mass dependence (dashed: 1/Mn
t , n = 0, 2, 4; solid:

1/M6
t ). The dotted line corresponds to the pure soft expansion result σN

gg, without matching

to the low-x behaviour. We observe very good convergence towards the heavy-top result,

assuring us of the high quality of the latter.

We then apply the same criteria as at NLO in order to obtain the “optimal” result

σNNLO(Mt) for the Mt dependent NNLO terms. They allow us to keep all four available

terms for the gg and the qg curve, i.e., through order 1/M6
t , and again only the first

two terms for the qq, qq̄, and qq′ initiated sub-processes. The result, divided by the one

obtained from eq. (3.3), is shown in figure 8, for various orders in the soft expansion which

again converges excellently.

The final result is within 0.5% of the well-known heavy-top limit, clearly justifying its

successful and extensive application in the literature. As outlined above, one can now try

to improve the NNLO prediction by factoring out the LO top mass dependence. However,

it is obvious that this will not alter the result by more than 0.5% which is way below any

expected experimental accuracy.

It should be stressed that the accuracy of the heavy-top limit found in our calculation

is overshadowed by the current uncertainties arising from the renormalization and factor-

ization scale dependence and parton density functions. Also, interference effects with the

bottom induced gluon-Higgs couplings have justifiably been neglected in our study; they

may become relevant in supersymmetric models with enhanced bottom Yukawa coupling.

In this context, it should also be recalled that NNLO corrections for the bottom induced

gluon Higgs coupling are to date unknown; the small bottom quark mass complicates the

calculation enormously, and even a feasible approximation scheme has not yet been found.

7 Conclusions and outlook

Top mass effects on the NNLO Higgs cross section in gluon fusion have been calculated.

For the dominant gg channel, the result for ŝ < 4M2
t has been matched to the limiting

behaviour at x → 0 as obtained in ref. [49]. We have demonstrated the reliability of our

result through the excellent convergence of the soft expansion. The main result is the

confirmation of the remarkable quality of the heavy-top limit as defined in eq. (3.3) which

agrees with the 1/Mt expansion to better than 0.5% in the phenomenologically interesting

mass range 100GeV ≤ MH ≤ 300GeV, both at the LHC as well as at the Tevatron. This

is an extremely comforting result because it validates the numerous higher order analyses
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Figure 7. Ratio of the gg induced component of the NNLO hadronic cross section as obtained

from eq. (5.2) to the heavy-top result of eq. (3.3), (decreasing dash-length corresponds to increasing

order in 1/Mt); the dotted line is the result obtained from the pure soft expansion σ̂
(2),N
gg through

order 1/Mt
6 without the matching of eq. (5.2).
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Figure 8. NNLO version of figure 6, but now the curves are normalized to the heavy-top limit of

eq. (3.3).

that have been carried out up to now, in preparation for the LHC experiments [52, 53], and

in particular for the ongoing Higgs searches at the Tevatron [54].

It remains to be seen to what extent the findings of our paper carry over to less inclusive

quantities like distributions or phase space cuts. This requires a substantial extension of

our approach and is left for future studies.
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